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Abstract
We consider the Dirichlet Laplacian in a domain formed by two three-
dimensional parallel layers having common boundary and coupled by a window.
The window produces the bound states below the essential spectrum; we obtain
two-sided estimates for them. It is also shown that the eigenvalues emerge from
the threshold of the essential spectrum as the window passes through certain
critical shapes. We prove the necessary condition for the window to be of
critical shape. Under an additional assumption we show that this condition is
sufficient and obtain the asymptotic expansion for the emerging eigenvalue and
for the associated eigenfunction.

PACS numbers: 03.65.Db, 03.65.Fd

1. Introduction

There are a number of works studying the spectral properties of the Dirichlet Laplacian
in unbounded domains such as infinite planar strips or three-dimensional layers with some
perturbations. The interest is stimulated by the applications of such models in quantum
mechanics, in particular, in the theory of quantum waveguides. In the case the perturbation
is absent, the system is trivial due to the natural separation of variables, while the presence
usually leads to various phenomena interesting both from physical and mathematical point of
views.

One of the possible systems attracting much attention is two adjacent parallel strips or
layers coupled by the window(s) being bounded domain(s) cut out in the common boundary.
The two-dimensional case was studied quite intensively, we refer here to [B, ESTV, BE, EV,
BEG, BGRS, G3] (see also references therein). It was shown that the perturbation by the
window(s) is negative, i.e., it leads to the presence of the isolated bound states below the
essential spectrum; the latter is invariant w.r.t. the window(s). In the one-window case it
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Figure 1. Window-coupled layers.

was shown in [B, ESTV, BEG] that by widening the window one can produce any prescribed
number of isolated eigenvalues. They appear when the window’s length passes through certain
critical values; this phenomenon was studied in details and the asymptotics expansions for the
emerging eigenvalues were obtained, see [B, BEG, G3].

In the three-dimensional case corresponding to window-coupled layers Exner and Vugalter
showed that a small window generates one simple isolated eigenvalue emerging from the
threshold of the essential spectrum [EV]. They also obtained two-sided asymptotic estimates
for the eigenvalue. The asymptotics expansion for this eigenvalue has been constructed
formally in [P]. In the present paper, we treat the same system but for a finite window.
The presence of a window leads to a non-empty discrete spectrum; we obtain two-sided
estimates for the eigenvalues. We show that the enlargement of the window produces new
isolated eigenvalues emerging from the continuum, and it happens in the way similar to the
two-dimensional case. Namely, there are critical shapes of the window so that enlarging the
latter one generates a new eigenvalue below the threshold no matter how the increment is
small. We show that the necessary condition for such eigenvalue to emerge is the presence
of a non-trivial bounded resonance solution corresponding to the threshold of the essential
spectrum. We describe all possible resonance solutions. We also prove that the presence of the
bounded non-trivial resonance solution of certain type is sufficient to generate an eigenvalue
below the essential spectrum. We also give the leading terms of the asymptotics expansions
for this eigenvalue and for the associated eigenfunction.

2. Formulation of the problem and the main results

Let x ′ = (x1, x2), x = (x ′, x3) be Cartesian coordinates in R
2 and R

3, respectively, and ω ⊂ R
2

be a bounded simply connected domain having infinitely differentiable smooth boundary. We
denote �ω := {x : x3 ∈ (−d, 0) ∪ (0, π)} ∪ ω, d � π . In what follows the set ω × {0} is
referred to as window (cf figure 1).

The main object of our study is the Dirichlet Laplacian in �ω introduced rigorously as
associated with the sesquilinear form

hω[u, v] := (∇u,∇v)L2(�ω)

on W̊ 1
2 (�ω), and we indicate such operator as Hω. Hereinafter for a domain S ⊆ �ω by

W̊
j

2 (S) we denote the subset of the functions in W
j

2 (S) vanishing on ∂S. Our main aim is to
study the spectrum of Hω.
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In order to present the main results we require additional notations. Assuming ω �= ∅, in
a small neighbourhood of ∂ω we introduce coordinates (τ, s), where s is the arc length of ∂ω

and τ is the distance to a point measured in the direction of the outward normal to ∂ω. By
(r, θ) we denote the polar coordinates corresponding to (τ, x3).

Let χ = χ(t) ∈ C∞(R) be a cut-off function vanishing as t > 1/3 and equalling one as
t < 1/4. Given δ > 0 small enough, by Vδ we denote the set of the functions

u(x) =
a0 +

∞∑
j=1

e− 2πjr

s0

(
aj√
j

cos
2πjs

s0
+

ãj√
j

sin
2πjs

s0

) √
r sin

θ

2
,

aj , ãj ∈ C, ‖u‖2
Vδ

:= |a0|2 +
∞∑

j=1

(|aj |2 + |̃aj |2) < ∞,

defined on Tδ := {x : r < δ}. Here s0 is the length of ∂ω. We will show that these functions
are well defined (see theorem 2.1).

Given S ⊆ �ω and small δ > 0, by W(δ, S) we denote the set of the functions

u(x) = u(0)(x)χ
( r

δ

)
+ u(1)(x), (2.1)

where u(0) ∈ Vδ, u
(1) ∈ W 2

2 (S), u = 0 on ∂�ω ∩ S. We will employ the symbol D(·) to
indicate the domain of an operator.

Theorem 2.1. Suppose ω is non-empty. Then there exists δ0 > 0 such that D(Hω) =
W(δ,�ω), and for each u ∈ D(Hω)

Hωu = −2∇u(0) · ∇χ − u(0)	χ − 	u(1), χ = χ

(
r

δ0

)
(2.2)

The estimates

C1‖Hωu‖L2(�ω) � ‖u(0)‖Vδ
+ ‖u(1)‖W 2

2 (�ω) � C2‖Hωu‖L2(�ω),

‖u(0)‖W 1
2 (Tδ)

+

∥∥∥∥ ∂

∂s
∇u(0)

∥∥∥∥
L2(Tδ)

+

∥∥∥∥r
∂2u(0)

∂τ 2

∥∥∥∥
L2(Tδ)

(2.3)

+

∥∥∥∥r
∂2u(0)

∂τ∂x3

∥∥∥∥
L2(Tδ)

+

∥∥∥∥r
∂2u(0)

∂x2
3

∥∥∥∥
L2(Tδ)

� C‖u(0)‖Vδ
.

hold true, where the constants C,Ci > 0 are independent of u(0) and u(1).

Let λi = λi(ω) be the isolated eigenvalues of Hω taken counting multiplicity and ordered
in the non-decreasing order. By σ(·), σess(·), σdisc(·) we denote the spectrum, the essential
spectrum and the discrete one of an operator, respectively. We will also use the symbol # A to
indicate the number of the elements in a set A.

Theorem 2.2. The essential spectrum of Hω coincides with [1, +∞). The discrete spectrum
consists of a finite number of the eigenvalues satisfying inequalities

π2

(π + d)2
+ µ

(N)
i � λi(ω) � π2

(π + d)2
+ µ

(D)
i , (2.4)

where µ
(N)
i and µ

(D)
i are the eigenvalues of the Neumann and Dirichlet Laplacian in ω,

respectively. The number of the eigenvalues of Hω is estimated as

#

{
µ

(D)
i : µ

(D)
i <

2πd + d2

(π + d)2

}
� # σdisc(Hω) � #

{
µ

(N)
i : µ

(N)
i <

2πd + d2

(π + d)2

}
. (2.5)
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We denote Bρ(c) := {x ′ : |x ′ − c| < ρ}.
Theorem 2.3. Let ω = ω(t) ⊂ R

2 be a family of bounded simply connected domains having
infinitely differentiable boundary and satisfying the following assumption:

(A1) For each t0 ∈ (0, +∞) and t close to t0 there exist diffeomorphism M(t0, t) ∈ C3 defined
in the vicinity of ω(t0) such that M(t0, t)ω(t0) = ω(t),M0(t0, t0) = I; the components
of M(t0, t) and their derivatives up to the third order are jointly continuous w.r.t. spatial
variables and t.

Then the eigenvalues of Hω(t) are continuous w.r.t. t. If, in addition,

(A2) There exist ρi = ρi(t), i = 1, 2, such that Bρ1(t)(0) ⊂ ω(t) ⊂ Bρ2(t)(0), t ∈ [0, +∞) and

lim
t→+∞ ρ1(t) = +∞, lim

t→+0
ρ2(t) = 0; (2.6)

ω(t1) ⊂ ω(t2) for all t1 < t2; there exists an infinite sequence 0 = t1 < t2 � t3 � · · · ,
such that # σdisc(Hω(t)) = n, t ∈ (tn, tn+1], tn → +∞, n → +∞ and λn(ω(t)) →
1 − 0, t → tn + 0.

This theorem states that there exist critical shapes of ω such that by enlarging them
one produces new eigenvalue(s) below the essential spectrum. The next part of our results
describes how such eigenvalues emerge. First we state

Lemma 2.4. The problem

−	 =  in �ω,  = 0 on ∂�ω (2.7)

has at most finite number of bounded non-trivial solutions assumed to be even w.r.t. x3 if
d = π . They can be chosen so that there is at most one solution behaving at infinity as

 = sin x3 + O(|x ′|−2), x ′ → +∞, x3 ∈ (0, π); (2.8)

at most two solutions behaving as

 = c1x1 + c2x2

|x ′|2 sin x3 + O(|x ′|−3), x ′ → +∞, x3 ∈ (0, π), |c1|2 + |c2|2 = 1;
(2.9)

and a finite number of solutions belonging to L2(�ω). Each of these solutions is infinitely
differentiable up to the boundary except ∂ω × {0}, while in the vicinity of ∂ω × {0} it behaves
as

(x) = l(s)
√

r sin
θ

2
+ O(r), r → 0, (2.10)

where l ∈ C∞(∂ω).

Given ω, we consider the family of bounded domains ωε ⊂ R
2 whose boundaries are

∂ωε := {x ′ : τ = εβ(s)}, where ε → +0 and β ∈ C∞(∂ω) is an arbitrary function.

Theorem 2.5. Suppose the problem (2.7) has no bounded non-trivial solution assumed to
be even w.r.t. x3 if d = π . Then the operator Hωε

has no eigenvalues converging to one as
ε → +0.

We introduce two-valued symbol, γ := 1, if d < π , and γ := 2, if d = π .
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Theorem 2.6. Suppose the problem (2.7) has the unique bounded solution  assumed to be
even w.r.t. x3 if d = π and this solution satisfies (2.8). Then l �≡ 0, and there exists the
unique solution ̃ to (2.7) satisfying the conditions

̃(x) = l(s)β(s)

2
√

r
sin

θ

2
+ l̃ (s)

√
r sin

θ

2
+ O(r), r → 0,

̃(x) = c̃ ln |x ′| sin x3 + O(|x ′|−1), |x ′| → +∞, x3 ∈ (0, π),

(2.11)

where l̃ ∈ C∞(∂ω), c̃ is a constant. If

i1 := 1

2γ

∫
∂ω

βl2
 ds > 0; or i1 = 0, i2 := 1

2γ

∫
∂ω

βll̃ ds > 0, (2.12)

there exists the unique eigenvalue of Hωε
converging to 1 − 0 as ε → +0. It is simple, and

λε = 1 − 4 exp
(
−2C + 2 i2

i2
1

)
exp

(
− 2

εi1

)
(1 + O(ε)), if i1 > 0,

λε = 1 − exp
(
− 2

ε2i2

)
(c + O(ε)), if i1 = 0, i2 > 0,

(2.13)

where c is a constant and C is the Euler constant. The associated eigenfunction satisfies the
identity

ψε =  + O(
√

ε) (2.14)

in the norms of W 1
2 (S) and W 2

2 (S \ Tδ) for each bounded fixed domain S ⊂ �ωε
and δ > 0.

It decays exponentially at infinity,

ψε = O(ε−√
1−λε |x ′ ||x ′|−1), |x ′| → +∞.

If

i1 < 0; or i1 = 0, i2 < 0, (2.15)

the operator Hωε
has no eigenvalues converging to 1 − 0 as ε → +0.

We observe that the leading terms in the asymptotics (2.13) are discontinuous as d → π ;
this is due to the presence of γ in the formulae. The similar phenomenon was found formally
in [P] in the case of small window. We note that it occurs in the two-dimensional case too,
see [B].

Theorem 2.5 states that the necessary condition for the eigenvalues to emerge is the
presence of a bounded non-trivial solution to (2.7). There are a number of cases corresponding
to various non-trivial solutions. One of the possible cases treats theorem 2.6 and other cases
remain open. It is an interesting question to obtain the results similar to theorem 2.6 for
the remaining cases. In particular, we conjecture that the total multiplicity of the emerging
eigenvalues coincides with the number of bounded non-trivial solutions to (2.7). Another
conjecture is that if there exists the unique bounded non-trivial solution to (2.7), the eigenvalue
emerges if i1 > 0 and does not if i1 < 0. Moreover, if the eigenvalue emerges, its asymptotics
should depend on the behaviour at infinity of the non-trivial solution. Namely, we conjecture
that

λε = 1 − c
ε

|ln ε| + · · · , (2.16)

if the non-trivial solution satisfies (2.9), and

λε = 1 − cε + · · · , (2.17)

if the non-trivial solution belongs to L2(�), where c are some constants. One of the motivations
to these asymptotics is the results of [KS] where the two-dimensional Schrödinger operator
on the plane perturbed by a fast decaying potential was considered. They addressed the same
question on describing the behaviour of the eigenvalues emerging from the threshold of the
essential spectrum. The asymptotics similar to (2.13) were shown to occur in some cases,
while in the other cases the asymptotics similar to (2.16), (2.17) were valid.
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3. Domain of Hω

The section is devoted to the proof of theorem 2.1. We begin with the series of auxiliary
lemmas and notations. We denote �δ := {(τ, x3) : r < δ}\{(τ, x3) : x3 = 0, τ > 0}, where
δ > 0 is small enough.

Lemma 3.1. For each g ∈ L2(�δ) there exists the unique generalized solution v ∈ W̊ 1
2 (�) to

the problem

	τ,x3v = g in �, v = 0 on ∂�. (3.1)

It can be represented as v = v(0) + v(1), v(0) = α
√

r sin θ
2 , where v(1) ∈ W̊ 2

2 (�). The estimate

|α| + ‖v(1)‖W 2
2 (�δ)

� C‖g‖L2(�δ) (3.2)

holds true, where the constant C is independent of g and δ.

Proof. It is sufficient to give the proof for two subcases corresponding to the function g being
odd or even w.r.t. x3. In both cases, the unique solvability of (3.1) follows from the standard
results in the theory of generalized solutions to elliptic boundary value problems.

If g is odd, the generalized solution to (3.1) is odd w.r.t. x3 and hence v = 0 as
x3 = 0. Thus, this function solves the boundary value problem like (3.1) but in the half-
disc �δ ∩ {(τ, x3) : x3 > 0}. By the smoothness improving theorems we thus obtain that
v ∈ W̊ 2

2 (�δ), α = 0, and the estimate (3.2) is valid.
Suppose now that g is even w.r.t. x3. We expand g into the Fourier series

g(τ, x3) =
∞∑

j=0

g2j+1(r) sin
2j + 1

2
θ, gp(r) := 1

π

∫ 2π

0
g(τ, x3) sin

pθ

2
dθ,

which holds true in L2(�δ)-norm. This fact can be established by analogy with the proof of
lemma 3.2 in [B]. The Parseval identity

‖g‖2
L2(�) = π

∞∑
j=0

∫ δ

0
|g2j+1(r)|2r dr (3.3)

is valid. We now solve (3.1) by the separation of variables,

v(τ, x3) =
∞∑

j=0

v2j+1(r) sin
2j + 1

2
θ,

vp(r) := r
p

2

p

∫ r

δ

t−
p

2 +1gp(t) dt − r− p

2

p

∫ r

0
t

p

2 +1gp(t) dt +
r

p

2 δ−p

p

∫ δ

0
t

p

2 +1gp(t) dt.

(3.4)

Let us first analyse the first term in this series. We define

ṽ1(r) := v1(r) − α
√

r = r
1
2

∫ r

0
t

1
2 g1(t) dt − r− 1

2

∫ r

0
t

3
2 g1(t) dt,

α :=
∫ δ

0
r− 1

2

( r

δ
− 1

)
g1 dr = 1

π

∫
�δ

r− 1
2

( r

δ
− 1

)
g sin

θ

2
dτ dx3.

It is easy to estimate the constant α:

|α|2 �
‖g‖2

L2(�δ)

π2

∫
�δ

r−1
( r

δ
− 1

)2
dτ dx3 = 2δ

3π
‖g‖2

L2(�δ)
. (3.5)

Employing the estimate∫ r

0
t

3
2 |g1(t)| dt � r

∫ r

0
t

1
2 |g1(t)| dt,
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and integrating by parts, we check that∥∥∥∥̃v1(r) sin
θ

2

∥∥∥∥2

W 2
2 (�δ)

� C

∫ δ

0
(|̃v′′

1 |2r + |̃v′
1|2r−1 + |̃v1|2r−3) dr

� C

∫ δ

0
r−2

(∫ r

0
t

1
2 |g1(t)|2 dt

)2

dr

� C

∫ δ

0
r− 3

2

∫ r

0
t

3
2 |g1(t)|2 dt dr

� C

∫ δ

0
r|g1(r)|2 dr � C‖g‖2

L2(�δ)
, (3.6)

where the constant C is independent of g and δ. In view of the inequality obtained and (3.5) it
is sufficient to show that the series

∑∞
j=1 v2j+1(r) sin (2j+1)θ

2 converges in W 2
2 (�δ)-norm and

to estimate the norm of the sum by ‖g‖L2(�δ). More precisely, we should show that
∞∑

j=1

∥∥∥∥v2j+1(r) sin
(2j + 1)θ

2

∥∥∥∥
W 2

2 (�δ)

� C‖g‖L2(�δ).

Employing the definition of vp, (3.3), and the estimate∣∣∣∣∫ δ

0
t

p

2 +1gp(t) dt

∣∣∣∣2

� δp+2

p + 2

∫ δ

0
r|gp(r)|2 dr,

we see that it is sufficient to check that
∞∑

j=1

j 2
∫ δ

0

(
r2j−2

(∫ δ

r

t−j+ 1
2 gj (t) dt

)2

+ r−2j−4

(∫ r

0
t j+ 3

2 gj (t) dt

)2
)

dr � C‖g‖2
L2(�δ)

,

where the constant C is independent of g and δ. This estimate follows from (3.3) and the chain
of inequalities∫ δ

0
r2j−2

(∫ δ

r

t−j+ 1
2 gj (t) dt

)2

dr �
∫ δ

0

2rj+ 1
2

5 − 2j

(
1 − rj− 5

2

δj− 5
2

) ∫ δ

r

t−j− 1
2 |gj (t)|2 dt dr

�
∫ δ

0

2rj+ 1
2

|5 − 2j |
∫ δ

r

t−j− 1
2 |gj (t)|2 dt dr � 4

|5 − 2j |(2j + 3)

∫ δ

0
r|gj (r)|2 dr,∫ δ

0
r−2j−4

(∫ r

0
t j+ 3

2 gj (t) dt

)2

dr �
∫ δ

0

2r−j− 1
2

2j + 7

∫ r

0
t j+ 1

2 |gj (t)|2 dt

� 4

(2j + 7)(2j − 1)

∫ δ

0
r|gj (r)|2 dr,

where we have integrated by parts. �

Lemma 3.2. For each f ∈ L2(Tδ) there exists the unique generalized solution u ∈ W̊ 1
2 (Tδ) to

the problem

	τ,x3,su = f in Tδ, u = 0 on ∂Tδ. (3.7)

It can be represented as

u = u(0) + u(1), u(0) ∈ Vδ, u(1) ∈ W 2
2 (Tδ). (3.8)

The estimates (2.3) and

‖u(0)‖Vδ
+ ‖u(1)‖W 2

2 (Tδ)
� C‖f ‖L2(Tδ) (3.9)

are valid.
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Proof. The unique solvability of (3.7) is obvious. We separate variables and obtain

f (x) = f0(τ, x3) +
∞∑

j=1

(
fj (τ, x3) cos

2πjs

s0
+ f̃ j (τ, x3) sin

2πjs

s0

)
,

f0 = 1

s0

∫ s0

0
f ds, fj = 2

s0

∫ s0

0
f cos

2πjs

s0
ds, f̃ j = 2

s0

∫ s0

0
f sin

2πjs

s0
ds, (3.10)

u(x) = u0(τ, x3) +
∞∑

j=1

(
uj (τ, x3) cos

2πjs

s0
+ ũj (τ, x3) sin

2πjs

s0

)
,

where the series for f converges in L2(Tδ), and the coefficients of (3.10) are the generalized
solutions to

(	τ,x3 − N2)v = g in �δ, v = 0 on ∂�δ,

where N = 2πj/s0 and g = fj or g = f̃ j . These problems are uniquely solvable in W̊ 1
2 (�δ).

By [K, chapter V, section 3.5, equation (3.16)] and the identity

‖∇v‖2
L2(�δ)

− N2‖v‖2
L2(�δ)

= (g, v)L2(�δ)

we have the estimates

‖v‖L2(�δ) � C

N2 + 1
‖g‖L2(�δ), ‖v‖W 1

2 (�δ)
� C

N + 1
‖g‖L2(�δ), (3.11)

where the constant C is independent of g,N and δ. Thus, the series (3.10) converges in
W 1

2 (�δ)-norm and therefore gives the generalized solution to (3.7). This solution also solves
(3.1), where the right-hand side of the equation is (g + N2v). We take into account (3.11) and
apply lemma 3.1 to conclude that the function v can be represented as v = α

√
r sin θ

2 + v(1),
where α and v(1) ∈ W 2

2 (�δ) satisfy (3.2).
Let us estimate α more precisely. It follows from lemma 3.1 that the first term in the

series (3.4) for v satisfies the relations

v0(r) sin
θ

2
= α

√
r sin

θ

2
+ ṽ0(τ, x3), v0(r) = 1

π

∫ 2π

0
v sin

θ

2
dθ,

where ṽ0 ∈ W 2
2 (�δ). The function v0 solves the problem(

d

dr
r

d

dr
− 1

4r2
− N2

)
v0 = g0 in (0, δ), v0(δ) = 0, g0 := 1

π

∫ 2π

0
g sin

θ

2
dθ,

and obeys the condition v0(r) sin θ
2 ∈ W̊ 1

2 (�δ). Hence,

v0(r) =
∫ r

0
g0(t)

√
t sinh N(r − t)

N
√

r
dt +

sinh Nr

N
√

r sinh Nδ

∫ δ

0
g0(t)

√
t sinh N(t − δ) dt.

Proceeding as in (3.6), we check that

sin θ
2

N
√

r

∫ r

0
g0(t)

√
t sinh N(r − t) dt ∈ W 2

2 (�δ),

and therefore

α =
∫ δ

0

√
t sinh N(t − δ)

sinh Nδ
g0(t) dt,

|α|2 �
∫ δ

0

sinh2 N(δ − t)

sinh2 Nδ
dt

∫ δ

0
t |g0(t)|2 dt � C

N
‖g‖L2(�δ),

(3.12)
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where

C = max
[0,+∞)

sinh 2t − 2t

4 sinh2 t
< ∞.

It is easy to check that for N �= 0∥∥∥∥√
r e−Nr sin

θ

2

∥∥∥∥2

L2(�δ)

= π

∫ δ

0
r2 e−2Nr dr � π

N3

∫ +∞

0
t2 e−2t dt = π

4N3
. (3.13)

In the same way one can make sure∥∥∥∥√
r e−Nr sin

θ

2

∥∥∥∥2

W 1
2 (�δ)

� C

N
,

∥∥∥∥√
r( e−Nr − 1) sin

θ

2

∥∥∥∥2

W 2
2 (�δ)

� CN,

where the constant C is independent of N and δ. By (3.11) and (3.2) we conclude now that∥∥∥∥v − α
√

r e−Nr sin
θ

2

∥∥∥∥
L2(�δ)

� C

N2 + 1
‖g‖L2(�δ),∥∥∥∥v − α

√
r e−Nr sin

θ

2

∥∥∥∥
W 1

2 (�δ)

� C

N + 1
‖g‖L2(�δ),∥∥∥∥v(1) − α

√
r( e−Nr − 1) sin

θ

2

∥∥∥∥
W 2

2 (�δ)

� C‖g‖L2(�δ),

where the constant C is independent of g,N and δ. These estimates and (3.12) applied to
the coefficients of the series (3.10) lead us to (3.8), (3.9), if we denote the fractions α

√
N

corresponding to uj and ũj by aj and ãj . The inequality (2.3) can be checked by estimating
the appropriate norms of

√
r e−Nr in the same way as in (3.13). �

Lemma 3.3. There exists δ0 > 0 small enough such that for any f ∈ L2(Tδ0) the generalized
solution to

	xu = f in Tδ0 , u = 0 on ∂Tδ0 , (3.14)

satisfies (3.8), (3.9) and (2.3).

Proof. Lemma 3.2 implies that the domain of the operator 	τ,x3,s in Tδ with Dirichlet
boundary conditions is

{
u : u ∈ Vδ ⊕ W 2

2 (Tδ), u
∣∣
∂Tδ

= 0
}
; the action of this operator reads

	(D)
τ,x3,s

u = 	τ,x3,su.
The Dirichlet Laplacian on Tδ can be written as

	(D)
x = 	(D)

τ,x3,s
+ L2u + L1u,

L2 := τ
2k − τk2

(1 − τk)2

∂2

∂s2
, L1 := − k

1 − τk

∂

∂τ
− τk′

(1 − τk)3

∂

∂s
,

where k = k(s) ∈ C∞(∂ω). The operator L2 is 	(D)
τ,x3,s

-bounded due to (3.9), (2.3), and
the bound is estimated by Cδ,C is independent of δ. The operator L1 is 	(D)

τ,x3,s
-compact.

Employing now [K, chapter IV, section 1.1, theorem. 1.1], we conclude that the domain of
	(D)

x is the same as that of 	(D)
τ,x3,s

, if δ is small enough. Therefore, the representation (3.8) is
valid. The estimates (3.9), (2.3) for the solution to (3.14) follow from that for the solution to
(3.7) and [K, chapter IV, section 1.4, theorem 1.16]. �

Let u be a function in the domain of Hω. By the definition, u ∈ W̊ 1
2 (�ω), and it is a

generalized solution to

−	xu = f in �ω, u = 0 on ∂�ω, (3.15)
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where f = Hωu. Using the smoothness improving theorems one can show that u ∈ W 2
2 (S)

for any S ∈ �ω\Tδ, δ > 0, and hence

Hωu = −	xu. (3.16)

It is also clear that

‖u‖W 1
2 (Tδ)

� C‖f ‖L2(Tδ). (3.17)

We denote

ũ(x) :=
(

1 − χ
( r

2δ

))
u(x) ∈ W̊ 2

2 (�ω).

Employing (3.17) and proceeding as in the proof of lemma 7.1 in [LU, chapter 3, section 7],
one can check that

‖̃u‖W 2
2 (�ω) � C‖f ‖L2(�ω).

The function û(x) := u(x)χ
(

r
2δ

)
is the solution to (3.14) with the right-hand side

f̃ := −f − 2∇xu · ∇xχ − u	xχ, χ = χ
( r

2δ

)
.

In view of (3.17) we have

‖f̃ ‖L2(Tδ) � C(δ)‖f ‖L2(Tδ).

Employing now lemma 3.3, we conclude that the representation (3.8) and the estimates (3.9),
(2.3) hold true. It remains to note that by (3.8)

û = χ
( r

δ

)
û = χ

( r

δ

)
û(0) + χ

( r

δ

)
û(1).

Denoting now u(1) := ũ + χ
(

r
δ

)̂
u(1), we conclude that the representation (2.1) holds true.

If u is given by (2.1), it is easy to check that u ∈ W̊ 1
2 (�ω) and it is the generalized solution

to the problem (3.15), where the right-hand side is that of (2.2). Thus, u belongs to the domain
of Hω. To prove (2.2), it is sufficient to substitute (2.1) into (3.16). The proof of theorem 2.1
is complete.

4. Estimates and continuity of the eigenvalues

In this section we prove theorems 2.2 and 2.3.

Proof of theorem 2.2. The main idea of the proof is borrowed from [ESTV, section II].
We introduce additional boundary ∂ω × (−d, π) and impose in turn Dirichlet and Neumann
boundary condition on it. As a result, we have two direct sums H(D)

int ⊕H(D)
ext and H(N)

int ⊕H(N)
ext ,

where H(D)
int is the Dirichlet Laplacian in ω × (−d, π) and H(D)

ext is the Dirichlet Laplacian in
�ω\(ω × (−d, π)). The operators H(N)

int ,H(N)
ext are introduced in the same way; the difference

is the boundary condition on ∂ω × (−d, π) which is the Neumann one.
The identities

σess(Hω) = σ
(
H(D)

ext

) = σess
(
H(D)

ext

) = σ
(
H(N)

ext

) = σess
(
H(N)

ext

) = [1, +∞)

can be proven in the same way as the similar identity in the proof of theorem 2.1 in [BE]. The
eigenvalues of H(N)

int ,H(D)
int are calculated by the separation of variables:

λi,j

(
H(D)

int

) = µ
(D)
i +

π2j 2

(π + d)2
, λi,j

(
H(N)

int

) = µ
(N)
i +

π2j 2

(π + d)2
, i, j � 1.
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It is clear that π2j 2/(π + d)2 > 1, j � 2. Taking into account this inequality and standard
bracketing [RS, chapter XIII, section 15], we arrive at the estimates (2.4). The estimates (2.5)
follow from (2.4). �

Proof of theorem 2.3. Let us first prove that the eigenvalues of Hω(t) are continuous w.r.t. t.
Given t0 ∈ (0, +∞) and t close to t0, we introduce new variables as

x̃ = (̃x ′, x̃3), x̃ ′ = χ
( r

δ

)
M(t0, t)x

′ +
(

1 − χ
( r

δ

))
x ′,

x̃3 =
(
b(x ′, t)χ

( r

δ

)
+ 1 − χ

( r

δ

))
x3, b(x ′, t) =

√(
∂τ̃

∂τ

)2

+
1

(1 − τk)2

(
∂s̃

∂s

)2

where (̃τ , s̃) are associated with x̃ ′ in the same way as (τ, s) with x ′. Keeping in mind
assumption (A1), one can easily make sure that the variables x̃ are well defined for t sufficiently
close to t0, and the domain �ω(t0) is mapped onto �ω(t) under such change of variables. In the
space L2(�ω(t0)) = L2(�ω(t)) we define a unitary operator

(Q(t)u) = √
qu(Q(·)), q := det

(
∂xi

∂x̃j

)
i,j=1,...,3

,

where Q is defined as x = Q(̃x). By direct calculations we check that

Q(t)Hω(t)Q−1(t) = b(Q′(·), t)Hω(t0) + L3, (4.1)

L3 := b12
∂2

∂τ∂s
+ x3b13

∂2

∂τ∂x3
+ b22

∂2

∂s2
+ b23

∂2

∂s∂x3
+ x3b33

∂2

∂x2
3

+ b1
∂

∂τ
+ b2

∂

∂s
+ b3

∂

∂x3
+ b0, (4.2)

where bi,j = bi,j (x, t) ∈ C(Tδ × (t0 − c, t0 + c)), bi = bi(x, t) ∈ C(Tδ × (t0 − c, t0 + c)) and
bi,j (x, 0) = bi(x, 0) = 0. The supports of bi,j , bi lie inside Tδ . It is also follows from (A1)
that

b(x ′, t) = 1 + b̃(x ′, t), b̃(x ′, t) ∈ C0(Tδ × (t0 − c, t0 + c)), b̃(x ′, 0) = 0.

Theorem 2.1 and, in particular, the estimates (2.3) imply that L3 is Hω(t0)-bounded. By (4.1)
and the last formula for b we conclude now that the difference (Q(t)Hω(t)Q−1(t) − Hω(t0)) is
a small perturbation bounded relatively w.r.t. Hω(t0), and Q(t0)Hω(t0)Q−1(t0) = Hω(t0). Thus,
the eigenvalues of Q(t)Hω(t)Q−1(t) converges to those of Hω(t0). Therefore, the same is true
for the eigenvalues of Hω(t).

Assume now that ω(t1) ⊂ ω(t2) for all t1 < t2. These are the standard minimax
arguments which show that the eigenvalues λi(ω(t)) are monotonically decreasing functions
of t. Hence, to prove the last statement of the theorem it is sufficient to show that for each
eigenvalue λi(ω(t)) there exists ti such that λi(ω(t)) → 1 − 0, as t → ti + 0. Suppose
that this is wrong for an eigenvalue λj (ω(t)) on a sequence t (m) → +0. In this case
λ1(ω(t(m))) � λj (ω(t(m))) � c < 1. At the same time, by [EV, theorem 3.1] and the
second identity in (2.6) we have λ1(ω(t)) → 1 − 0, t → +0, the contradiction. The sequence
of critical values ti is infinite due to (2.4) and the first identity in (2.6). �

5. Reduction of the resolvent to a compact operator

In this section, we study the boundary value problem

−	u = (1 − k2)u + f in �ω, u = 0 on ∂�ω, (5.1)
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where k ∈ C ranges in a small neighbourhood of zero, f ∈ L2(�ω), suppf ⊆ �ω,β :=
�ω ∩ {x : |x ′| < β}, β > 0. We choose β so that ω ⊂ {x ′ : |x ′| < β/4}. If d = π , we
assume in addition that g is even w.r.t. x3 and the same is supposed for u. We should also
specify the behaviour at infinity for the solutions of (5.1). If Re k > 0, we take the function
u = (Hω −1 +k2)−1f as the solution to (5.1). For other values of k we will define the analytic
continuation of the operator (Hω − 1 + k2)−1. We will do it by the technique employed in [B,
section 3], [BEG, section 3.A]. We will also reduce (5.1) to a Fredholm equation in L2(�ω,β)

that will be one of the key ingredient in the proof of theorems 2.5 and 2.6.
Let g ∈ L2(�ω,β), suppg ⊆ �ω,β and g is even w.r.t. x3, if d = π . By v = v(x, k) we

denote the solution to the problem

−	v = (1 − k2)v + g in �∅, v = 0 on ∂�∅,

given by the formulae

v(x, k) =
{
v+(x, k), x3 ∈ (0, π),

v−(x, k), x3 ∈ (−d, 0),

v+(x, k) =
∞∑

j=1

v+
j (x ′, k) sin jx3, v−(x, k) =

∞∑
j=1

v−
j (x ′, k) sin

πj

d
x3,

v+
j (x ′, k) := 1

2π i

∫
R

2×(0,π)

g(y)H0(i|x ′ − y ′|
√

j 2 − 1 + k2) sin y3 dy,

v−
j (x ′, k) := 1

2id

∫
R

2×(−d,0)

g(y)H0

(
i|x ′ − y ′|

√
π2j 2

d2
− 1 + k2

)
sin

πj

d
y3 dy,

where H0 is the Hankel function and
√

k2 = k, while the other roots are specified by the
requirement

√
1 = 1. If k = 0, we introduce the function v+

1 as

v+
1 (x ′, 0) = 1

π2

∫
R

2×(0,π)

g(y) ln|x ′ − y ′| sin y3 dy,

and

v−
1 (x ′, 0) = 1

π2

∫
R

2×(−π,0)

g(y) ln|x ′ − y ′| sin y3 dy, if d = π.

The function v is well defined and belongs to W 2
2 (�

∅,̃β ) for all β̃ > 0 and all considered
values of k. This fact can be shown by analogy with the proof of lemma 3.1 in [B].

Consider the problem

	w = 	v in �ω,β, w = v on ∂�ω,β. (5.2)

This problem is uniquely solvable in W 1
2 (�ω,β). We construct the solution to (5.1) as

u(x, k) = (A1(k)g)(x, k) := w(x, k)χ(|x ′|/β) + (1 − χ(|x ′|/β))v(x, k). (5.3)

This function satisfies the boundary condition in (5.1). Substituting it into equation (5.1), we
obtain

g + A2(k)g = f, (5.4)

A2(k)g := (v − w)(	 + 1 − k2)χ

( |x ′|
β

)
+ 2∇χ

( |x ′|
β

)
· ∇(v − w). (5.5)

By A we denote the set of the operators A = A(k) bounded as operators from L2(�ω,β)

into W 1
2 (�ω,̃β),W(δ, β̃) and W 2

2 (�ω,̃β \Tδ) for each β̃ > 0, δ > 0 and small k, and such that
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the function A(k)f is real valued for real-valued f and small non-negative k. If an operator
A(k) belongs to A and is continuous (uniformly bounded, holomorphic) w.r.t. k as an operator
from L2(�β) into each of aforementioned spaces, we will say shortly that the operator A(k)

belongs to A and is continuous (uniformly bounded, holomorphic) w.r.t. k.
We denote

a(g) := 1

π2

∫
�ω,β∩{x:x3>0}

g(x) sin x3 dx3.

Repeating the arguments of the proofs of lemmas 3.1 and 3.3–3.5 in [B] and of
propositions 3.1 and 3.2 in [BEG], and employing lemma 3.3 one can prove

Lemma 5.1. Let k ∈ C be small enough. The operator A1(k) ∈ A is bounded uniformly
w.r.t. small k. The operator A2(k) is a linear compact operator in L2(�ω,β). For k �= 0 these
operators can be represented as

A1(k) = A3(k
2) + A4(k

2) ln k, A2(k) = A5(k
2) + A6(k

2) ln k, (5.6)

where A3(·),A4(·) ∈ A are holomorphic, and A5(·),A6(·) are linear compact operators in
L2(�ω,β) being holomorphic w.r.t. k. The functions Ai (k

2)f, i = 5, 6, are real valued if f is
real valued and k2 is small and non-negative. For each f ∈ L2(�ω,β) there exists a solution
to (5.1) given by u = A1(k)g. This solution behaves at infinity as

u(x, k) = c

(
k,

x ′

|x ′|
)

e−k|x ′||x ′|− 1
2 sin x3 + O(e−k|x ′ ||x ′|− 3

2 ), x3 ∈ (0, π),

c(k, ξ) = −
√

2π

4
√

k
a
(
(1 + kξ · x ′)g(x)

)
+ O(k

3
2 ), k → 0, (5.7)

u(x, k) = O
(

e−
√

π2

d2 −1+k2|x ′ ||x ′|− 3
2
)
, x3 ∈ (−d, 0), if d < π,

if k �= 0, and

u(x, 0) =
(

a(g) ln|x ′| +
c1x1 + c2x2

|x ′|2
)

sin x3 + O(|x ′|−2), x3 ∈ (0, π),

u(x, 0) = O
(

e−
√

π2

d2 −1|x ′ ||x ′|− 3
2
)
, x3 ∈ (−d, 0), if d < π.

(5.8)

For each solution to (5.1) behaving at infinity in accordance with (5.7), (5.8) there exists the
unique solution to (5.4) such that u = A1(k)g.

We denote

V0(x) :=
{

sin x3, x3 ∈ (0, π),

(1 − γ ) sin x3, x3 ∈ (−d, 0).

By W0 we indicate the solution to (5.2) as v = V0. We introduce the functions U0 by (5.3) via
V0 and W0. The next lemma is checked by direct calculations.

Lemma 5.2. The identities

A3(0)g = (C − ln 2)A4(0)g + A1(0)g, A4(0)g = a(g)U0,

A5(0)g = (C − ln 2)A6(0)g + A2(0)g, A6(0)g = −a(g)(	 + 1)U0,

hold true.
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Lemma 5.3. Let k = 0. There is a finite number of linear independent non-trivial solutions
to (5.1), (5.8) assumed to be even w.r.t. x3 if d = π . They can be chosen so that there is at
most one solution behaving at infinity

(x) = ln|x ′| sin x3 + O(|x ′|−1), |x ′| → +∞, x3 ∈ (0, π); (5.9)

at most two solutions satisfying (2.9), and a finite number of solutions belonging to L2(�ω).
Each of these solutions is infinitely differentiable up to the boundary except ∂ω × {0}, and in
the vicinity of ∂ω × {0} it satisfies (2.10).

Proof. The statement on the existence and the number of the solutions follows immediately
from (5.8). The claimed smoothness is due to the standard smoothness improving theorems.
Formula (2.10) can be checked by analogy with the proof of lemma 4.2 in [B]. �

Lemma 5.4. Let k = 0. Equation (5.4) is solvable if and only if (f,i)L2(�ω,β ) = 0, where
i are non-trivial solutions to (5.1), (5.8). If the solvability conditions holds true, there exists
the unique solution of (5.4) orthogonal to φ in L2(�ω,β).

Proof. By lemma 5.1 the operator A2(0) is compact. Thus, equation (5.4) is solvable if
and only if (f, φ∗

i )L2(�ω,β ) = 0, where φ∗
i are non-trivial solutions to the adjoint equation

φ∗
i + A∗

2(0)φ∗
i = 0. It is sufficient to show that φ∗

i = i . Since the numbers of φ∗
i and i are

same, in view of lemma 5.1 it is sufficient to check that

0 = (i + A∗
2(0)i, h)L2(�ω,β ) = (

i, h + A2(0)h
)
L2(�ω,β )

for all h ∈ L2(�ω,β). We denote u:= A1(0)h; by the definition of A1(0) this function satisfies
(5.8). The same formula is valid for i . Moreover, h + A2(0)h = −(	 + 1)u. Taking these
facts into account and integrating by parts, we obtain

(i, h + A2(0)h)L2(�ω,β ) = −
∫

�ω,β

i(	 + 1)u dx = −
∫

�ω

u(	 + 1)i dx = 0. �

Proof of lemma 2.4. The most part of the lemma follows from lemma 5.3; we just need to check
the statement on the solution satisfying (2.8). If there exists the non-trivial solution u behaving
at infinity in accordance with (5.9), the problem (2.7) cannot have a solution  satisfying (2.8).
This fact can be proven by integrating by parts in the integral 0 = ∫

�ω,β
u(	 + 1) dx.

Assume that there is no non-trivial solution obeying (5.9); let us prove that in this case
there is the unique non-trivial solution behaving at infinity as

(x) = (c ln|x ′| + 1) sin x3 + O(|x ′|−1), |x ′| → +∞, x3 ∈ (0, π), c �= 0.

(5.10)

We construct it as

(x) = ̃(x) +

(
1 − χ

(
2|x ′|
3β

))
ln|x ′| sin x3, x3 ∈ (0, π),

(x) = ̃(x), x3 ∈ (−d, 0), if d < π,

(x) = ̃(x) +

(
1 − χ

(
2|x ′|
3β

))
ln|x ′| sin x3, x3 ∈ (−π, 0), if d = π.

It leads us to the problem (5.1) for ̃ with k = 0 where

f (x) = (	 + 1)

(
1 − χ

(
2|x ′|
3β

))
sin x3, x3 ∈ (0, π),

f (x) = (γ − 1)(	 + 1)

(
1 − χ

(
2|x ′|
3β

))
sin x3, x3 ∈ (−π, 0).
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Taking into account lemma 5.1 and integrating by parts, it is easy to check that (f,i)L2(�ω,β ) =
0 for each non-trivial solution i of (5.1), (5.8). By lemma 5.4 equation (5.4) is thus solvable
that by lemma 5.1 proves the solvability of the problem for ̃. The uniqueness of  follows
from (5.10). �

6. Singularity of the resolvent

In this section, we study the behaviour of the operator (I + A2(k))−1 in the vicinity of k = 0.
We recall that, if d = π, we restrict all the operators on the even w.r.t. x3 functions. We
consider two cases corresponding to different possibilities of the presence of non-trivial
solution described in lemmas 2.4 and 5.3. The results of the section will be employed in the
proofs of theorems 2.5 and 2.6.

6.1. Absence of decaying and logarithmically growing non-trivial solution

Here we deal with the case when the problem (5.1), (5.8) has no non-trivial solutions described
in lemma 5.3. As it has been shown in the proof of lemma 2.4, in this case the problem (2.7)
has the unique non-trivial solution satisfying (5.10).

We substitute (5.6) into (5.4) and take into account lemma 5.2. It leads us to

g + A2(0)g − (ln k − ln 2 + C)a(g)(	 + 1)U0 + k2 ln kA7(k)g = f, (6.1)

where

A7(k) := A5(k
2) − A5(0) + (A6(k

2) − A6(0)) ln k

k2 ln k

is a compact operator in L2(�ω,β) continuous w.r.t. small real k. The same is true for (kA7(k))′.
Hereinafter the expressions like ln kA7(k) are understood as (ln k)A7(k).

By the assumption the operator (I + A2(0)) is invertible, and the same is thus true for
(I + A2(0) + k2 ln kA7(k)). We denote the inverse to the latter as A8(k) and apply it to (6.1),

g − (ln k − ln 2 + C)a(g)A8(k)(	 + 1)U0 = A8(k)f.

Now we apply the functional a to the equation obtained that solves (6.1),

a(g) = a(A8(k)f )

1 − (ln k − ln 2 + C)a(A8(k)(	 + 1)U0)
,

(I + A2(k))−1f = g = (ln k − ln 2 + C)a(A8(k)f )A8(k)(	 + 1)U0

1 − (ln k − ln 2 + C)a(A8(k)(	 + 1)U0)
+ A8(k)f.

(6.2)

Let us prove that the denominator is non-zero. In order to do it, we need

Lemma 6.1. The identities

A1(0)A8(0)(	 + 1)U0 + U0 = , a((	 + 1)U0) = c,

hold true, where  is the unique solution to (2.7), (2.8) and c is from (5.10).

Proof. It is sufficient to prove the former formula, since it implies the latter due to (5.8).
The definition of A8 yields that A8(0)(	 + 1)U0 = (I + A2(0))−1(	 + 1)U0, and

hence A8(0)(	 + 1)U0 is the function g corresponding to the solution u of (5.1), (5.9) with
k = 0, f = (	 + 1)U0. Thus, the function u + U0 solves (2.7), (2.8), that by the uniqueness
completes the proof. �

This lemma and the definition of A8 imply that

a(A8(k)(	 + 1)U0) = c + k2h(k) ln k,
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where the function h(k) is continuous w.r.t. small real k, and the same is true for (kh(k))′. We
substitute this identity into (6.2), take into account (5.6) and lemmas 5.2 and 6.1, and arrive at

Lemma 6.2. If the problem (2.7) has no bounded non-trivial solution satisfying (5.8) or (2.8),
the operator A1(k)(I + A2(k))−1 ∈ A is bounded uniformly in small real k. If the problem
(2.7) has the unique bounded non-trivial solution and it satisfies (2.8), the identity

A1(k)(I + A2(k))−1 = (ln k − ln 2 + C)a((I + A2(0))−1·)
+A1(0)(I + A2(0))−1 + k2 ln3 kA9(k)

holds true, where A9 ∈ A is continuous w.r.t. small real k and the same is true for (kA9(k))′.

6.2. Presence of the unique logarithmically growing solution

In this subsection, we study the case when the problem (2.7) has the unique solution and this
solution satisfies (5.9). We denote it by ; let φ ∈ L2(�ω,β) be the associated solution to
(5.4) with k = 0, f = 0.

We construct the solution to (5.4) as

g = αφ + g̃, (6.3)

where α = α(̃g, f ) is a constant. We substitute this identity and (5.6) into (5.4) that yields

g̃ + A2(0)̃g − (ln k − ln 2 + C)a(̃g)(	 + 1)U0 + k2 ln kA7(k)̃g

−α(̃g, f )(ln k − ln 2 + C)(	 + 1)U0 + α(̃g, f )k2 ln kA7(k)φ = f. (6.4)

Here, we have used the identity

a(φ) = 1, (6.5)

which follows from the definition of φ and (5.8), (5.9). Integrating by parts, one can check
that ∫

�ω,β

(	 + 1)U0 dx = −γπ2.

Taking into account this formula and lemma 5.4, we calculate the inner product of (6.4) and
,

γπ2(ln k − ln 2 + C)(a(̃g) + α(̃g, f )) + k2 ln k(A7(k)̃g,)L2(�ω,β )

+ α(̃g, f )k2 ln k(A7(k)φ,)L2(�ω,β ) = (f,)L2(�ω,β ).

Hence,

α(̃g, f ) = (f,)L2(�ω,β )

γ π2(ln k − ln 2 + C) + k2 ln k(A7(k)φ,)L2(�ω,β )

− γπ2(ln k − ln 2 + C)a(̃g) + k2 ln k(A7(k)̃g,)L2(�ω,β )

γ π2(ln k − ln 2 + C) + k2 ln k(A7(k)φ,)L2(�ω,β )

. (6.6)

We substitute this identity into (6.4) and obtain

g̃ + A2(0)̃g + k2 ln kA10(k)̃g = f̃ ,

A10(k) := A7(k) − γπ2(ln k − ln 2 + C)a(·) + k2 ln k(A7(k)·, )L2(�ω,β )

γ π2(ln k − ln 2 + C) + k2 ln k(A7(k)φ,)L2(�ω,β )

A7(k)φ

+
(A7(k)·, )L2(�ω,β ) − a(·)(A7(k)φ,)L2(�ω,β )

γ π2(ln k − ln 2 + C) + k2 ln k(A7(k)φ,)L2(�ω,β )

(ln k − ln 2 + C)(	 + 1)U0,

f̃ = f +
(ln k − ln 2 + C)(	 + 1)U0 − k2 ln kA7(k)φ

γπ2(ln k − ln 2 + C) + k2 ln k(A7(k)φ,)L2(�ω,β )

(f,)L2(�ω,β ).
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It is easy to check that the operator A10 is compact in L2(�ω,β) and bounded uniformly in
small real k. One can also make sure that

(f̃ , )L2(�ω,β ) = 0, (A10(k)̃g,)L2(�ω,β ) = 0 for each g̃ ∈ L2(�ω,β).

Hence, f̃ ∈ {}⊥, where {}⊥ is the orthogonal complement to  in L2(�ω,β). Since
the operator (I + A2(0))−1 : {}⊥ → {φ}⊥ is bounded by lemma 5.4, we conclude that the
operator (I + A2(0) + k2 ln kA10(k))−1 : {}⊥ → {φ}⊥ is bounded uniformly in small real k.
Thus,

g̃ = (I + A2(0) + k2 ln kA10(k))−1f̃ .

We also note that by (6.5) and (6.6)

a(g) = α(̃g) + a(̃g, f ) = (f,)L2(�ω,β )

γ π2(ln k − ln 2 + C) + k2 ln k(A7(k)φ,)L2(�ω,β )

+
k2(A7(k)(a(̃g)φ ln k − g̃), )L2(�ω,β )

γ π2(ln k − ln 2 + C) + k2 ln k(A7(k)φ,)L2(�ω,β )

.

These identities, the formulae for α(̃g, f ) and f̃ , (6.3) and lemma 5.2 lead us to

Lemma 6.3. Suppose the problem (2.7) has the unique non-trivial solution and it satisfies
(5.9). Then the operator A1(k)(I + A2(k))−1 ∈ A is bounded uniformly in small real k.

7. Eigenvalues emerging from the essential spectrum

This section is devoted to the proofs of theorems 2.5 and 2.6.

Proof of theorem 2.5. Given ωε, we describe the domain �ωε
in terms of the Cartesian

coordinates x̃ = (̃x ′, x̃3), and introduce new variables as

x = χ

(
r̃

δ

)
M(ε)̃x +

(
1 − χ

(
r̃

δ̃

))
x̃, (7.1)

where r̃ :=
√

τ̃ 2 + x̃2
3 , (̃τ , s̃) are associated with x̃ ′ and ∂ω, δ̃ > 0 is small enough. The

mapping M(ε) is described by the formulae

τ = τ̃ − εβ(s), s̃ = s, x3 = x̃3

√
1 +

ε2(β ′(s))2

(1 − τ̃k(s))2
.

It is clear that under this change of variables the domain �ωε
is mapped onto �ω.

We rewrite the eigenvalue equation Hωε
ψ = λψ in the variables x that leads us to

(Hω − εL4(ε))ψ = λψ, (7.2)

where L4(ε) is given by the expression on the right-hand side of (4.2) with the coefficients
belonging to C(Tδ × [0, ε0]), ε0 > 0, and their supports lie inside Tδ . The operator L4 can be
represented as

L4(ε) = L5 + εL6 + ε2L7(ε), L5 = βχ
∂

∂τ
(	 + 1) − (	 + 1)βχ

∂

∂τ
,

L6 = 1

2
β2 ∂

∂τ
χ2 ∂

∂τ
(	 + 1) +

1

2
(	 + 1)β2χ2 ∂2

∂τ 2
− βχ

∂

∂τ
(	 + 1)βχ

∂

∂τ
(7.3)

− (β ′)2x3χ

2(1 − τk)2

∂

∂x3
(	 + 1) + (	 + 1)

(β ′)2x3χ

2(1 − τk)2

∂

∂x3
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where β = β(s), χ = χ(r/̃δ), and L7(ε) is given by the expression on the right-hand side of
(4.2) with the coefficients belonging to C(Tδ × [0, ε0]), ε0 > 0 and their supports lie inside
Tδ . The operators L5,L6 are in fact second-order differential operators satisfying (4.2) with
compactly supported continuous coefficients. We write them in terms of Laplace operators
since it is more convenient for the following arguments. We also observe that the operators
Li , i = 4, 5, 6, are Hω-bounded by theorem 2.1 and the bounds can be estimated uniformly
in ε.

We can rewrite (7.2) as

(Hω − λ)ψ = εL4ψ. (7.4)

If we denote now λ = 1 − k2, we conclude that an eigenfunction ψ is a non-trivial solution to
(5.1), (5.7) with f = fε := εL4ψ .

Let us find all values of k converging to zero as ε → +0 for which the problem (5.1), (5.7)
with f = εL4ψ has a non-trivial solution. If the solution belongs to D(Hω), it will imply that
λ = 1 − k2 is an eigenvalue of Hωε

close to the threshold of the essential spectrum. In order
to find such values, we employ the approach similar to that used in [BEG, B, G1, G2].

We note that in the case d = π the eigenfunctions of Hωε
are even w.r.t. x3 that can be

proved by analogy with [B, lemma 4.1]. Because of this in the case d = π we restrict our
considerations to even on x3 functions.

It follows from (7.4) and lemma 5.1 that ψ = A1(k)(I + A2(k))−1fε. We substitute this
formula into (7.2) and obtain

fε − εL4A1(k)(I + A2(k))−1fε = 0. (7.5)

By the hypothesis and lemmas 2.4 and 5.3 in the case considered the problem (2.7), (5.8) can
have at most one non-trivial solution and, if exists, it satisfies (5.9). Hence, by lemmas 6.2
and 6.3, the estimate (2.3) and the definition of L4 we conclude that the operator
L4A1(k)(I + A2(k))−1 is bounded uniformly in ε and small real k as an operator in L2(�ω,β).
Thus, for ε and small real k the operator (I − εL4A1(k)(I +A2(k))−1) is boundedly invertible,
and equation (7.5) has the trivial solution only. Therefore, equation (7.4) has no non-trivial
solution for small ε and real k that completes the proof. �

In the proof of theorem 2.6 we will employ

Lemma 7.1. Suppose that there exists a non-trivial solution  to (2.7) and (5.9). Then

a(g) = − ((I + A2(0))g,)L2(�ω,β )

γ π2
.

Proof. We denote u := A1(0)g. This function solves (5.1), (5.8) for k = 0, f := (I+A2(0))g.
Now it is sufficient to integrate by parts in the integral

(f,)L2(�ω,β ) = (f,)L2(�ω) = −
∫

�ω

(	 + 1)u dx

to prove the claimed formula. �

Proof of theorem 2.6. We argue here as in the proof of theorem 2.5 up to equation (7.5). We
substitute the representation for A1(k)(I + A2(k))−1 given in lemma 6.2 into (7.5),

fε − ε(ln k − ln 2 + C)a((I + A2(0))−1fε)L4

− εL4A1(0)(I + A2(0))−1fε − εk2 ln kL4A9(k)fε = 0. (7.6)
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By lemma 6.1 the operator L4(A1(0)(I + A2(0))−1 + k2 ln3 kA9(k)) is bounded uniformly in
ε and small real k as an operator in L2(�ω,β). Hence, the operator

I − εL4(A1(0)(I + A2(0))−1 + k2 ln3 kA9(k))

is boundedly invertible. We denote the inverse by A11(ε, k) and apply it to (7.6),

fε = εa((I + A2(0))−1fε)A11(ε, k)L4. (7.7)

We seek a non-trivial solution to (7.2). By lemma 5.1 it implies that the associated function fε

is also non-trivial. Hence, by the identity (7.7), a((I+A2(0))−1fε) �= 0. Taking this inequality
into account, we apply the functional a((I + A2(0))−1·) to (7.7) and arrive at

1 = ε(ln k − ln 2 + C)a((I + A2(0))−1A11(ε, k)L4). (7.8)

The roots of this equation are values of k for which equation (7.5) has a non-trivial solution.
This solution is unique up to a multiplicative constant and reads as follows:

fε = ε(ln k − ln 2 + C)A11(ε, k)L4. (7.9)

The corresponding non-trivial solution to (5.1), (5.7) is given by ψε = A1(k)(I + A2(k))−1fε.
In view of (7.8) the coefficient c in the asymptotics (5.7) satisfies the identity

c = −
√

2π

4
√

k
εa((I + A2(0))−1A11(ε, k)L4) + O(1)

=
√

2π

4
√

k(ln k − ln 2 + C)
+ O(1), k → +0,

where we have employed (7.8). Hence, c is non-zero and the function ψε decays at infinity
(and thus is a needed eigenfunction), if and only if it is associated with a positive root to (7.8).
We also note that for k = 0 equation (7.4) cannot have a non-trivial solution. Indeed, if so, it
satisfies (5.8), that allows us to rewrite (7.4) as

fε − εL4A1(0)(I + A2(0))−1fε = 0.

By the boundedness of A11(ε, 0) it implies fε = 0.
Let us study the existence of positive roots to (7.8). We rewrite this equation as

1

ln k − ln 2 + C
− εa((I + A2(0))−1A11(ε, k)L4) = 0. (7.10)

The properties of the operator A9 stated in lemma 6.2 and the definition of A11 imply that
the function on the left-hand side of this equation is real valued and continuous w.r.t. small
non-negative k. Moreover,∣∣∣∣ d

dk
a((I + A2(0))−1A11(ε, k)L4)

∣∣∣∣ � C,

where the constant C is independent of ε and small non-negative k. Hence, the derivation of
the left-hand side in (7.10) is strictly negative for small positive k and small ε. Therefore, this
equation has at most one positive root. It is clear that this root exists, if

a((I + A2(0))−1A11(ε, 0)L4) < 0, (7.11)

and does not exist, if

a((I + A2(0))−1A11(ε, 0)L4) > 0. (7.12)
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By lemma 7.1 and the definition of A11 we obtain that

a((I + A2(0))−1A11(ε, 0)L4) = a((I + A2(0))−1(I + εL4A1(0)(I + A2(0))−1)L4) + O(ε2)

= C0 + εC1 + O(ε2),

C0 := (L5,)L2(�)

γ π2
, C1 := (L6,)L2(�ω) + (L5A1(0)(I + A2(0))−1L5,)L2(�ω)

γ π2
.

(7.13)

We denote u := A1(0)(I + A2(0))−1L5. It follows from lemma 5.1 and (7.3) that u is the
unique solution to (5.1), (5.8) for k = 0, f = L5 = −(	 + 1)βχ ∂

∂τ
. We denote now

̃ := u − βχ ∂
∂τ

and conclude that there exists the unique solution to (2.7) satisfying (5.8)
and (2.11). The first identity in (2.11) follows from the formula

(x) = l(s)r1/2 sin
θ

2
+ l

(1)
 (s)r sin θ + l

(2)
 (s)r3/2 sin

3θ

2
+ O(r2), r → +0,

l
(i)
 ∈ C∞(∂ω), which can be proved by analogy with lemma 4.2 in [B]. Moreover, l �≡ 0,

since otherwise the function ∂
∂x1

∈ W̊ 1
2 (�ω) is a non-trivial solution to (2.7) belonging to

L2(�ω) that contradicts to the hypothesis. We also note that the function u satisfies (2.10)
with l replaced by l̃ .

We employ now all the aforementioned facts and (7.3), and integrate by parts,

C0 = − 1

γπ2

∫
�ω

(	 + 1)βχ
∂

∂τ
dx = −i1,

C1 = 1

2γπ2

∫
�ω

(	 + 1)β2χ2 ∂2

∂τ 2
dx − 1

γπ2

∫
�ω

βχ
∂

∂τ
(	 + 1)βχ

∂

∂τ
dx

+
1

2γπ2

∫
�ω

(	 + 1)
(β ′)2x3χ

2(1 − τk)2

∂

∂x3
dx +

1

γπ2

∫
�ω

βχ
∂

∂τ
(	 + 1)u dx

− 1

γπ2

∫
�ω

(	 + 1)βχ
∂u

∂τ
dx = − 1

γπ2

∫
�ω

(	 + 1)βχ
∂u

∂τ
dx = −i2.

Hence, by (7.13),

a((I + A2(0))−1A11(ε, 0)L4) = −i1 − εi2 + O(ε2). (7.14)

It yields that the inequality (7.12) holds true, if the condition (2.15) is valid, i.e., in this case
the operator Hωε

has no eigenvalues converging to 1 − 0 as ε → +0. If the condition (2.12) is
valid, it implies (7.11), and in this case the operator Hωε

has the unique eigenvalue converging
to 1 − 0 as ε → +0. This eigenvalue is given by λε = 1 − k2

ε , where kε is the root to (7.10).
Formula (7.14) and equation (7.10) yield the asymptotics for kε,

kε = 2 e
−C+ i2

i2
1 e− 1

εi1 (1 + O(ε)), if i1 > 0,

kε = e
− 1

ε2i2 (C + O(ε)), if i1 = 0, i2 > 0,

where C is a constant. These formulae prove (2.13).
The identities (7.8), (7.9) and the representation forA1(k)(I+A2(k))−1 given in lemma 6.2

imply that

ψε(x) = (x) + O(ε) (7.15)

in W 1
2 (�ω,̃β) and W 2

2 (�ω,̃β\Tδ) for each β̃ > 0, δ > 0. Given δ > 0, we can choose δ̃ in (7.1)
small enough so that x̃ = x as x̃ ∈ �ω,̃β \T̃δ . Hence, by (7.15) we conclude that

ψε(x(̃x)) = (̃x) + O(ε)

in W 2
2 (S\Tδ) for each fixed bounded domain S ⊂ �ωε

and each δ > 0.
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We pass to the variables x̃ in (7.15), and in view of last identity we conclude that the
asymptotic (2.14) is valid in the norm W 1

2 (�ω,β), if

‖ϕε‖W 1
2 (T̃δ)

= O(
√

ε), ϕε = ϕε(̃x) := (x(̃x)) − (̃x), (7.16)

for a fixed δ̃ > 0 small enough. Here, the norm is understood in terms of variables x̃. The
lowest eigenvalue of Dirichlet Laplacian in T̃δ increases unboundedly as δ̃ → +0. We employ
this fact, the minimax principle and the obvious identity ϕε

∣∣
∂T̃δ

= 0 to conclude that for δ̃

small enough the inequality

‖∇ϕε‖2
L2(T̃δ)

� 2‖ϕε‖2
L2(T̃δ)

holds true. It is also clear that the L2(T̃δ)-norm of ϕε is bounded uniformly in ε, and
‖(	x̃ + 1)ϕε‖L2(T̃δ)

= O(ε). We employ two last relations and integrate by parts,

‖ϕε‖2
W 1

2 (T̃δ)
� 3

(‖∇x̃ϕε‖2
L2(T̃δ)

− ‖ϕε‖2
L2(T̃δ)

)
= 3

∫
∂T̃δ∩{x:x3=0}

ϕε

[
∂ϕε

∂x̃3

]
d̃x ′ − 3

∫
T̃δ

ϕε(	x̃ + 1)ϕε d̃x

= 3
∫

∂�ω\∂�ωε

(x(̃x))

[
∂ϕε

∂x̃3

]
d̃x ′ − 3

∫
∂�ωε\∂�ω

(̃x)

[
∂ϕε

∂x̃3

]
d̃x ′ + O(ε),

where [
∂ϕε

∂x̃3

]
:= ∂ϕε

∂x̃3
(̃x ′,−0) − ∂ϕε

∂x̃3
(̃x ′, +0).

It follows from (2.10) that the integrands in the remaining integrals are bounded uniformly in
ε. Since the area of ∂�ω\∂�ωε

and ∂�ωε
\∂�ω is of order ε, we arrive at the identity (7.16).

The exponential decaying of ψε at infinity is due to (5.7). �
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